

Towards Detecting Signatures of Life with the Future LIFE Telescope

B. S. Konrad¹, E. Alei¹, D. Angerhausen¹, S. P. Quanz¹, and the LIFE Collaboration²

¹Institute for Particle Physics & Astrophysics, ETH Zurich | ²www.life-space-mission.com

LIFE can accurately constrain the size and surface conditions of an Earth-twin exoplanet.

LIFE can detect the biosignature pair O_3 -CH₄ in an Earth-twin exoplanet.

Introduction – Earth-Twin Study

The goal for LIFE is to correctly characterize the atmospheres of rocky exoplanets and potentially detect biosignature pairs (e.g. O_3 - N_2 O or O_3 - CH_4) in the mid-infrared (MIR). It is crucial to investigate how accurately the exoplanet's MIR thermal emission needs to be measured to allow for a sufficiently precise characterization.

To find a first answer to this question, we studied the **MIR emission of a cloud-free Earth-twin planet** orbiting a Sun-like star at a distance of 10 pc from us (Fig. 1). With the LIFESIM instrument simulator [2], we

Konrad+, 2022[1]

estimated the wavelengthdependent noise expected in observations with LIFE by

accounting for all major sources of astrophysical noise. We then ran atmospheric retrievals for **spectra of different quality** (variable resolution (R) and signal-to-noise ratio (S/N)), to analyze how well we manage to characterize the Earth-twin atmosphere as a function of the quality of the thermal emission spectrum. This approach provided us with **first estimates for the minimal requirements for the LIFE instrument**.

Figure 3: Retrieval results for trace gases at different R and S/N LIFE mock observations. **⊘**: Constrained abundance (uncertainty < ± 1.0 dex); **⊖**: constrained but cannot exclude lower abundances; **⊗**: unconstrained abundance.

Result & Conclusion - Earth-Twin Study

Independent of the spectral quality, the planet size and the surface conditions are well constrained. For all tested MIR LIFESIM spectra we manage to constrain (Fig. 2):

- **⊘ Planet radius:** uncertainty $< \pm 0.1 R_{\oplus}$
- Surface temperature: uncertainty < ± 20 K
- Surface pressure: uncertainty < ± 0.5 dex</p>

The uncertainties on the retrieved values decrease slightly with increasing quality of the considered spectrum.

The retrieval **results for the main molecules** present in Earth's atmosphere show the following behaviour (Fig. 3):

- 1. CO_2 , H_2O and O_3 : Detectable independent of the spectral quality. The uncertainty on the retrieved abundance is < 1.0 dex and decreases with increasing spectral quality.
- 2. N₂O and CO: Not constrained for any of the tested spectra. Their MIR features are small relative to the LIFEsim noise. Therefore, the O₂/O₃-N₂O biosignature is not detectable for an Earth-twin.
- **3.** CH₄: Outcome depends on spectral quality. Further analysis shows that a spectrum of $R \ge 50$, $S/N \ge 10$ is required to detect CH_4 in an Earth-twin exoplanet. This would make the O_2/O_3 -CH₄ biosignature accessible.

The abundances of Earth's main atmospheric gases N_2 and O_2 (not in Figure) are not constrainable, because they have no significant spectral features in the MIR. However, we can infer a \approx 1 bar thick atmosphere, of which the bulk is transparent in the MIR.

Background - Atmospheric Retrievals

A **retrieval** finds the best fit of a model for the exoplanet spectrum to an observed spectrum. Further, it retrieves Bayesian **estimates and uncertainties for the model parameters** (Fig. 4). The parameters describe planet and atmosphere properties, such as the planet radius, the pressure-temperature structure, and the abundances of atmospheric molecules. Our retrieval code depends on two subroutines:

- 1. **petitRADTRANS** [3]: 1D radiative transfer routine that calculates the spectrum for a given set of model parameter values.
- 2. MultiNest via pyMultiNest [4,5]: Parameter estimation with Nested Sampling [6]. Finds the set of parameters (with uncertainties) that best fits the observed spectrum.

Background - Biosignature Pairs

Biosignatures are substances, objects, or patterns that, if detected, strongly suggest biological activity. **Atmospheric biosignatures** are gases that are either produced directly via biological processes (e.g. O_2 , CH_4 , N_2O), or are derived from the latter via environmental effects (e.g. O_3 from O_2 via photochemistry). However, since most bio-

signature gases could also be produced in abiotic processes, the detection of a single gas is not a robust biosignature. But the simultaneous presence of two gases with abundances out of thermodynamic equilibrium (e.g., for Earth, O_2/O_3 with CH_4 or N_2O) can only be justified if both gases are continually replenished by biological processes. These pairs of gases are called **biosignature pairs** [7, 8].

Background - LIFE

A long-term goal for exoplanet research is to assess the habitability of Earth-like exoplanets, characterize their atmospheres, and search for signs of life. For this, **a new generation of space-based telescopes** is required. NASA aims to measure the stellar light reflected by exoplanets in the visible (VIS) and near-infrared (NIR) [9,10]. In contrast, the "Large interferometer For Exoplanets" (LIFE) [11] will measure the MIR thermal emission of terrestrial exoplanets. The LIFE collaboration is working toward realizing such a mission (see also talk by Eleonora Alei in Session 7; Fig. 5).

A planet's MIR emission is of interest to us, because many important molecules have

detectable spectral features in the MIR but not in the NIR/VIS (e.g. CH_4). Further, the MIR allows for a better assessment of the planetary radius, lower atmosphere, and surface conditions (if cloud-free) [12, 13]. Finally, the MIR provides direct access to the potential biosignature pairs O_3 - N_2O_1 and O_3 - CH_4 (O_3 , N_2O_1 , and CH_4 all have spectral features in the MIR range).

Björn S. Konrad

Contact Me:
konradb@student.ethz.ch

Personal Website:
https://konradbjorn.github.io

References:

- [1] Konrad, B. S., et al. 2022, A&A, 664, A23
- [2] Dannert, F., et al. 2022, A&A, 664, A22 [3] Mollière, P., et al. 2019, A&A, 627, A67
- [4] Feroz, F., et al. 2009, MNRAS, 398, 1601–1614 [5] Buchner, J., et al. 2014, A&A, 564, A125
- [6] Skilling, J., 2006, Bayesian Anal., 1, 833[7] Lovelock, J. E., 1965, Nature, 207, 568
- [8] Lippincott, E. R., et al. 1967, ApJ, 147, 753
- [9] The LUVOIR Team, 2019, arXiv e-prints, arXiv:1912.06219 [10] Gaudi, B. S., et al. 2020, arXiv e-prints, arXiv:2001.06683
- [11] Quanz, S. P., et al. 2022, A&A, 664, A21[12] Des Marais, D. J., et al. 2002, Astrobiology, 2, 153
- [12] Des Marais, D. J., et al. 2002, Astrobiology, 2, 15, [13] Line, M., et al. 2019, BAAS, 51, 271